Medwen

Onllne

© Medwell Journals, 2006

Asian Journal of Information Technology 5 (11): 1210-1212, 2006

Parallel Matrix Multiplication on Grid Enabled PC Cluster

'Karanjeet Singh Kahlon *O.P. Gupta and Rakesh Jindal
'Department of Computer Science and Engineering, G.NDU, Amritsar, India
Faculty of Computer Science, PAU, Ludhiana, 141004 India

Abstract: GPCC is a Grid enabled PC Cluster system developed for hamessing computational resources
available over LAN for parallel computing. Parallel computing is essential for solving very large scientific and
engineering problems. An effective parallel computing solution requires an appropriate parallel machine and
a well-optimized parallel program. Most parallel matrix multiplication algorithms use matrix decomposition based
on square root of the number of processors available. In this reserch, a grid enabled PC Cluster based on
Windows OS integrating the DeskGrid API to communicate among the processors 1s u The tasks are allocated
to the processors based on the log of the processor status and errors committed. sed. The decomposition of
the matrix is independent of the no. of processors available for the computation. Dynamic allocation of the
matrix pointer not only proved to be distributed memory efficient but also time efficient. This reserch is an
attempt to highlight the ease and stable nature of the Grid enabled PC Cluster (GPCC) based on Windows OS.

Key words: Grid computing/cluster computing, parallel processing, parallel algorithm

INTRODUCTION

Ever since the invention of the computer, users have
demanded more and more computational power to tackle
mcreasingly complex problems. Parallel computing is
essential for solving such very large scientific and
engineering problems. An effective parallel computing
solution requires an appropriate parallel machine and a
well-optimized parallel program. Loosely coupled personal
computers in a workgroup over the Intranet are very
promising candidate for parallel machine in the scenario.
Though, networked machines are having different types
of processors with varying clock speed yet computing
on the networked machines are becoming very popular
to solve both data intensive and compute intensive
scientific problems due to the demand for lugher
performance and lower cost.

In Distributed Parallel Computing, each processor has
its own memory and can only access its local memory.
The processors are connected with the other processors
via a high-speed commumcation network. A common
approach to programming multiprocessors is to use
library routines in addition to
conventional sequential program. Processors exchanges

message-passing

information with one another using send and receive
operations. Such a design of distributed memory
architecture using one way or two way communication
between cooperative tasks within a parallel application 1s
also called distributed parallel system.

In the past years, several research projects have
been conducted to explore this area of exploiting idle
machines available on a local area network to be used for
distributed parallel computing, which constitute a Grid
of PCs with 90% of the CPU power unused. In what
follows, performance models, the sequential and parallel
algorithms for matrices multiplication and the perform-
ances and their analysis are presented.

PERFORMANCE MODELS

Speedup: Speedup! is used to quantify the performance
gain from a parallel computation of a fixed size application
on a single machine in the network. It is defined as
follows:

Definition 1. The speedup for executing program P,
denoted by S5 (P) i a network of PCs is given by

S(P) =T (P / T(P) 5

seq
Where T(P),, is the time taken by P on one single
machine and T(P) .. is the time on no. of PC in a network.

Efficiency: Efficiency or utilization is a measure of the
time percentage for which a machine s usefully
employed in parallel computing

Defimtion 2. The efficiency of parallel computing of
application P in anetwork of PCs is defined as the ratio
of the total effective computing time to the total available
unused cycles in the network of PCs.

Correspoding Author: Karanjeet Singh Kahlon, Department of Computer Science and Engineering, G.NDU, Amritsar, India

1210

Asian J. Inform. Tech., 5 (11): 1210-1212, 2006

Scalability: Scalability measure the ability of a parallel
machine to improve performance as there are increases in
the size of the application program and m the size of the
system mvolved.

Definition 3. Scalability® exhibits performance linearly
proportional to the computing power of the network i.e.
number of the PCs used for computation.

The execution time of running program P on a Grid
enabled PC Cluster can be divided into three distinct parts
on each PC.

T, 1tis used computing time at the PC
¢ T, it is effective time to compute subtask t, on
networked PC, excluding the task creation time.
¢ T, it 1s the overhead of commumnication time,

memory access on the networked PC.

MATRIX DECOMPOSITION FOR
PARALLEL ALGORITHM

The matrix multiplication application is well suited
for checking both type of granularity of parallel
application 1.¢ fine gram and coarse grain applications.
The product C of the two matrices A and B 1s defined by

n-1
G = X A X byg
k=0

where a;, b; and ¢, is the element in ith row and jth
column of the matrix A, B and C respectively. In order for
the matrix multiplication to be defined, the dimensions of
the matrices to be multiply as AB = C must satisfy
(n>xm){(mxp) = (n>p). In this study, conformable square
matrices will be used for simplicity. The matrices A, B
and C are all nxn matrices. Sequential algorithm requires
n’ additions and multiplications, therefore its time
complexity is O (n’).

To implement the matrix multiplication in parallel™?,
the matrix A is decomposed into several multiple rows as
shown in the Fig. 1 depending on the number of
processor available for computing under the network.

The parallel algorithm for mstalled network of PCs
has two main characteristics.

» Itis based on Master-Slave paradigm
* Equal workload distribution

Algorithm
Step 1. Master (Head Node) reads data from user

Step 2. Master decompose the matrix A into multiple
TOWS

Fig. 1. Row decomposition

Logical components

Process
flow

Fig. 2: Commumication protocol

Step 3. Master broadcasts dynamic allocation of matrix
B columns to slaves

Step 4. Master sends respective parts of first matrix to
all other processes.

Step 5. Every process performs its local multiplication.

Step 6. All slave processes send back their result.

Step 7. Master (process 0) reads data and merges them.

To make this algorithm memory efficient, dynamic
allocation of the rows and columns are being made to the
nodes of grid enable cluster as shown m the Fig. 2. Head
node or Master Computer 1s sending the pomter to the
nodes. The algorithm is made time efficient by
decomposing the matrix A in to sub tasks depending on
the number of processors available and follows the
following formula for assigning number of rows to each
cluster node.

No. of rows — Size of the matrix

Number of processors

A 3-tier network design 1s used to mnplement the
parallel matrix multiplication. The network design congists
of three components.

s+ Master PC (Subimitter)
¢ Server
s Cluster of nodes { Executors)

1211

Asian J. Inform. Tech., 5 (11): 1210-1212, 2006

This environment is implemented using DeskGrid
APl and DLL files. DeskGrnid 1s a full implementation of
communication over TCP sockets Microsoft Win32
Platforms. The use of direct task-to-task TCP connections
has been found to sigmficantly outperform the older
UDP-based daemons routed message passing
implementation in PVMM™. This feature opens up the
possibility of utilizing resources commonly excluded from
network parallel computing systems such as Macintosh
and Windows based PCs. Tasks are managed by
background daemon which 1s resident on each node of
the grid enabled cluster. The daemon communicates with
each other using TCP protocol. The message size is kept
to the packet size of 4 k keeping in view the BDP
(Bandwidth Delay Product) value calculated based on
the Windows TCP Buffer” size of 64 K.

Moreover, we assume that at any given mstant only
one parallel program is in execution on the cluster and
that the main memory of each desktop system is large
enough to accommodate the working set of the parallel
process it executes. Finally, we assume that the
communication networlk carries only traffic generated by
the desktop PC in the cluster (both by the parallel program
and from jobs executed by other desktop PC).

The array sizes tested varied from R800x800 to
3200x3200. While each program was run its total execution
time was recorded using the timing routine within the C
compiler. The time for communicating the column matrix is
also recorded within the program.

RESULTS AND DISCUSSION

To evaluate the performance of the above designed
parallel machine and using the problem discussed in the
earlier section as the parallel program, a set of experiments
were conducted and data is recorded in tables as below.
From the Table 1, the communication time shows that
there is little variation, which is attributed due to the
window TCP size was kept under BDP size.

Table 1: Computation vs communication time

MM Comm. Effective
Size Process Time (sec) Speed up Time (sec) speed up
800 1 28.72
2 24.56 1.169 0.295 1.183
4 18.20 1.578 0.330 1.607
8 12.45 2.306 1.580 2.642
16 14.25 2.015 2.670 2.483
1600 1 42.80
2 34.30 1.247 0.980 1.285
4 22.72 1.883 1.680 2.034
8 16.50 2.593 2.506 3.058
16 16.90 2.533 3.860 3.282
3200 1 58.20
2 40.36 1.442 1.90 1.513
4 30.80 1.882 2.86 2.080
8 25.70 2.264 3.80 2.654
16 20.45 2.845 4.06 3.550

Performance of MM

0 T T L} 1
2 4 8 16

No. of processes

Fig. 3: Speed Vs Number of processor

Tt is seen that ratio of computation to communication
time is very high and this design under study is well
suited to coarse grain applications. Moreover, a speed up
of 40% is achieved using dynamic allocation of the matrix
pointers to cluster nodes.

CONCLUSION

In the present study, dynamic distribution of matrix
pointers to the client nodes not only improved the
execution time but also reduced the communication time.
Such design of the Grid enable PC Cluster (GPCC) 1s well
suited for the coarse grain applications and making the
bandwidth applications scalable in nature as shown in
the Fig. 3.

REFERENCES

1. Nanette, I.B., R.E. Felderman, A.E. Kulawik, C.L.
Seitz, I.N. Seizovic and W.K. Su, 1995, Myrinet-A
Gigabit per sec Local Area Network, In IEEE-Micro,
15 29-36.

2. Typou, T. et al, 2004. Implementing Matrix
Multiplication on an MPI Cluster of workstations, In
1st IC-SCCE.

3. Geist, A, A Beguelin and V. Sunderam, 1994. PVM
Parallel Virtual Machine-A User’s Guide and Tutorial
for Networked Parallel Computing, MIT Press,
Cambridge, MA.

4. Dave, MacDonald and W. Barkley, Microsoft
Windows 2000 TCP/IP Implementation Details.

1212

