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Abstract: In this study propose a new appreoach in using Hidden Markov Models (HMMs) for speech
recognition. Although HMMs are the state-of-the art speech recognition systems, they suffer from some
nherent limitations. One of these limitations is the independence assumption in the HMMs formalism. In the
approach described in this study, we use in the vector quantization process, grouped vectors of different length

to explicitly model the natural correlation between adjacent frames, instead of using a single vector in the
standard method. The system 1s tested on an Arabic isolated digits (0-9) recognition task, our method achieves
a 21% reduction in word error rate evaluation compared with the standard approach.
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INTRODUCTION

To date, the most successful speech recogmtion
systems have been based on Hidden Markov Models
(MM )M and the use of HMMSs for acoustic modelling
dommates the continuous speech recognition field.
Although HMMs will continue to play a role in most
speech recogmtion systems for a long time to come, they
suffer from major limitations which handicapped them to
reach human performance m tasks related to speech
recognition®. One of these limitations is the
mdependence assumption which says that there is no
correlation between adjacent input frames, so HMMs
examine only one frame of speech at a time"™. To overcome
this weakness in the HMMSs formalism, many researchers
developed 1deas such as augmenting the observation
space with feature derivatives'”, a viable solution but
doesn’t resolve the problem completely, or proposed to
explicitly model correlation, ncluding conditionally
Gaussian HMMs™? and segmental HMMs®?. However,
these approaches known in the literature as Segment
Models (SMs) while very powerful, tend to make changes
to the standard HMMs traimng and recognition
algorithms and with a ligher computational cost due to
the expanded state space!'™.

In this study, we propose a new approach tackling
the correlation between adjacent input frames without
changing any algorithm of the standard HMMs. The idea
behind our approach is to group frames (vectors) given
by the feature extraction and treat them as a single
observation vector in the Vector Quantization (VQ)
process.

HIDDEN MARKOV MODELS

Acoustic modeling: The goal of acoustic modeling 15 to
derive some convenient representation of speech signals
before their use in a speech recognition system. Hence
each speech signal in the current study, is sampled at
22050 Hz decimated at a rate of 11025 Hz, passes through
a high frequency preemphasis filter with a transfer
function H (z) = 1 - az ', The preemphasized data is
blocked into overlapping frames. Fach frame is 23.2 ms
duration, with 11.6 ms spacing. Spectral analysis is
performed to get twelve Mel Frequency Cepstral
Coefficients (MFCCW'Y and the log of the energy
calculated in the temporal domain. The first twelve MFCC
are obtained from the energies of F bank filters directly
using the DCT transform:
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The overall system 1s depicted n Fig. 1:

Presentation of hidden markov models: In this
subsection, we remind the basic definition of an HMM,
we formalize the assumptions that are made and describe
the basic elements of algorithms for HMMs, we use the
notation as in™. A hidden Markov model can be defined
as a doubly embedded stochastic process with an
underlying stochastic process that is not observable
(it is hidden) but can only be observed through another
set of stochastic processes that produce the sequence of
observations.
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Fig. 1. Analysis of speech frames

A Markov model of order k 1s a probability

distribution over a sequence of variables d, = {q,
aseeeneen , ¢} with the following conditional independence
property:

p(a.a™)=p(a]a) @

Since  qi summarizes all the relevant past
information, ¢, is generally called a state variable. Because
of the above conditional independence property, the joint
distribution of a whole sequence can be decomposed into
the product:

pla;) =p((f)t:1§£p(qx\qiif) 3

The special case of a Markov model of order 1 is the
one used in our study. In this case, the distribution is
even simpler:

=

plat) =p(a) TIp(q[a—) @

-
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and it is completely specified by the so-called initial state
probabilities p(q,) and transition probabilities p(q,|q, )
An HMM 15 characterized by the following five elements:

*  N: The number of states 1 the model.
*  M: The number of distinct observation symbols per

state, we denote an observation sequence by:

0={0,0,. 0.1

¢ The state transiticn probability distribution A = {a}
where

a; =prob[q,,, =5,/q, =5]1<1,j <N &)

1.e.: The probability of being in state S; at time t+1 and in
state S, at time t.

¢ The observation symbol probability distribution in
state |, B = {b{k)} where

b (k)=prob[v, at t/q,=9] 1<k<M ©®

i.e.: The probability of observing the symbol v, at
time t in the state S,.

s The initial state distribution m= {m,} where
m =prob{g, =S) 1<i<N G

i.e.: The probability of being in state S, at time t=1.

For convemience, we use the compact notation
A= (AB,m)to indicate the complete parameter set of the
model.

Viterbi algorithm: To find the single best state sequence
Q={q» Qpreovr - . gt for a given observation sequence
0 =140, 0p........ , Orf, we use a formal technique based on
dynamic programming methods and called the Viterbi
algorithm™. We first define the quantity:

& (1) = Max p[ql....qt =i, 01....Ot|)\,j| &

q-4r

ie: 8,i) is the best score ( highest probability along
a single path, at time t, which accounts for the first t
observations and ends in state 5. By mnduction we have:

8w (i) {m?x St(i)au} b.(o,,) ©

To actually retrieve the state sequence, we need to
keep track of the argument which maximized (9) for each
t and j. We do this via the array (j). The complete
procedure for finding the best sequence can now be
stated as follows:

Initialization:
81(1):n11?1(01) 1<i<N 10)
Y, (D=0
Recursion:
8,(j)=Max[8, (i) [bjfo,) 2=t<T
<
1= an
,(j) = Argmax| 8, (i), | 2<t<T
1=12N
1<j<N
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Termination:

— 8.0
p = Max([3: (D) a2
q; = Argmax[8, (i)]

1ZiZN

Path (state sequence) backtracking:
a4, =W, (q,) t=T-1T-2, ... 1 (13)

HMMS training algorithm: The traimng procedure 1s a
variant of a well known K-means iterative procedure for
clustering data™. We assume we have a training set of
observations and an initial estimate of all model
parameters. However, unlike the one required for
reestimation, the initial estimate can be chosen randomly,
or on the basis of any available model which 1s
appropriate to the data. Following model initiali zation, the
set of training observations sequences, is segmented into
states, based on the current model A. This segmentation
is achieved by finding the optimum state sequence via
the Viterbi algorithm and then backtracking along the
optimal path. The resulting of segmenting each of the
training sequences is, for each of the N states, a maximum
likelthood estimate of the set of the observations that
occur within each state S, according to the current model.
An updated estimate of the b; (k) parameters is:
b (k) = number of vectors with codebook index k in the
state | divided by the number of vectors 1n state J.

Based on this segmentation, updated estimates of the
a; coefficients can be obtained by counting the number of
transitions from state 1to] and dividing it by the number
of transitions from state i to any state ( including itself).
An updated model)A\,is obtamed from the new meodel
parameters and the Baum-Welch Eq!? (for more
details) are used to estimate all model parameters. The
resulting model is then compared to the previous model
(by computing a distance score that reflects the statistical
similarity of the HMMs). If the model distance score
exceeds a threshold, the old model A is replaced by the
new model ), and the overall training loop 1s repeated.
If the model distance score falls below the threshoeld, then
the model convergence is assumed and the final model
parameters are saved.

Vector quantization: The process of the Vector
Quantization (V) procedure basically partitions the entire
training vectors, equals to 6364 vector in our training set,
into M disjoint sets, represents each set by a single
vector (V,, 1 <m <M) which 1s generally the centroid of the
vectors in the training set and then iteratively optimizes
the partition and the codebook (i.e., the centroids of each
partition). Several algorithms exist for designing of an

appropriate codebook for quantization, mainly LBG and
k-means algorithms, in this study, we used the latter one
as we have done in past works!™! and for its universal
use'"”. Associated with VQ is a distorsion penalty since
we are representing an entire region of the vector space
by a single vector. Clearly it is advantageous to keep the
distorsion penalty as small as possible. However this
implies a large size codebook and that leads to problems
in implementing HMMs with a large number of
parameters. Once the codebook has been designed,
quantization of the input analysis vectors involves
computing a Euclidean distance between the input vector
and each of the M codebook vectors and assigning the
index of the codebook which gave the lowest distorsion
to the test frame.

The proposed approach: The class of lidden Markov
models which uses a vector quantization on the whole
vectors given by the feature extraction step, in our case
MFCC vectors with thirteen coefficients, 1s called discrete
HMMs, by contrast in continuous HMMs, a set of
vectors belonging to the same HMM state is assumed to
have a Gaussian distribution or a mixture of Gaussians. In
the former method, we generally quantize a unique vector
at time t of dimension D.

If we denote the observation sequence of a word v,
(1<v<V and V is the set of vocabulary words or digits) by:

00y O (14)

Where o, 1s the observation vector at time t (here a
MFCC vector with dimension D).

In the study we proposed, rather than applying the
VQ process on vectors of dimension D, we used a
concatenation of vectors, which we will call Grouped
Vectors (GV) of different lengths, we have used in our
study a concatenation of 3,57 and 9 vectors increasing
the new dimension of the new vectors, respectively to
39,65,91 and 117. By this method, the natural correlation
existing between successive frames 1s implicitly modeled
and all the recognition process so far is not changed,
since all the steps in the speech recognition system, will
perform in the new observation sequence 7).
With:

OT’:OLL’O o, 0n (15)

L: length (number) of vectors in the concatenated
vector (=3,5,7 or 9).
0,,": The Grouped Vector (GV) of length L at time t.

' (16)

Ovr = O gy O Puyiis
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Fig. 2. Curve representing tradeoff of VQ normalized
distorsion applied on grouped vectors of length T
as a function of the size of VQ codebook

[.]: the floor operator that returns the biggest mteger
less than its argument.

Because M 15 not known before runmng V, an
experiment was done to optimally choose it. Figure 2
llustrates the trade-off of normalized quantization
distorsion versus different values of M m Grouped
Vectors (GV) quantization for 1.=3,5,7and 9. Tt can be
seen that only decreases in distorsion accrue beyond a
value of M=64 for all T. (distorsions are between
0.65 and 0.5) We also can notice for a fixed M,
distorsions appear very close for I = 3 vs. 5 vectors and
for L = 7 vs. 9 vectors. Reduction ratios in distorsion
between M = 64 and M= 512 are 18, 20, 13.8 and 11.8%,
respectively for L = 3,5,7 and 9. Thus, we considered the
size of the VO centroid M = 64 as a good compromise
between the largest of the VQ codebook, the representing
ratio (99 rather than 12) and the distorsion penalty
reached.

RESULTS AND DISCUSSION

To evaluate our approach described above, a
moderate size database was recorded. The task we are
dealing with is of recognizing isolated Arabic digits (0-9)
mn a multispeaker and speaker independent manners. The
database was divided into four sets, a Tramming Set (TnS)
consisting of twenty occurrences of each digit by 20
talkers (i.e., a single occurrence of each digit per taller)
was used. Half of the talkers were male, half female. For
testing, we used three other independent Test Sets (TS)
with the following characteristics:

TS-1: The same 20 talkers as were used in the training,
300 occurrences of digits (0-9).

Table 1: Recognition performance (W.E.R) in (%) for the baseline system
(HMM/VQ) and the proposed approach (HVMM/GVQ)

HMM/ HMM/  HMM/ HMM/
HMM/VQ  GVQL=3  GVQL=5 GVQI=7 GVQL=%
TS-1  07.66 08.33 08.33 04.33 04.66
TS-2  13.00 08.66 10.33 11.00 11.00
TS-3 2676 31.68 28.05 26.10 21.81
Av. 1580 16.22 15.57 13.81 12.49

TS8-2: A new set of 6 talkers, five occurrences per digit per
talker were used, giving 300 occurrences of digits.

TS8-3: Another new set of 19 talkers, 9 talkers were male,
7 were female, giving 770 occurrences of digits.

In order to see the performance of our proposed
approach, called the HMM/GVQ system for HMM
Grouped Vector Quantization, that means vectors of
different length L grouped m the VQ process, we compare
it with the baseline approach called HMM/VQ, in which
Vector Quantization is performed only on a single vectors
as provided by the feature analysis Fig. 1.

Table 1 presents the results from a series of
recognition experiments to determine the effect of adding
adjacent vectors to the grouped vector (HMM/GVQ
systems). In all the experiments, we trained a single
hidden Markov model per digit (0-9), based on a discrete
density model, with state observation densities having 64
symbols. Each model was a left-to-right design with 5
states. It can be seen from the table, that the best word
error rate WER was 12.49% for the system of the approach
proposed where we used 9 vectors to form the new
grouped vector GV HMM/GVQ/L=9 and treated as an
observation vector, compared to the baseline method
HMM/V(Q, reduction was about 21%, from 15.8%
(HMM/VQ) to 12.49% (HMM/GV(QY/L=9). We also can see
from the table, that as the grouped vector GV was
increased to best model the dependence between vectors,
the WER was reduced from 15.57% in the HMM/GVQ
system with I. = 5 to 12.49% in the HMM/GVQ system
with I = 9, except in the case where . equals 3, causing
reduction m WER compared to the baseline method,
about 1.5,12.6 and 21 %, respectively for HMM/GVQ/L =5,
HMM/GVQ/L =7 and HMM/GVQ/L = 9 systems.

Figure 3 shows a comparison of the results in WER
evaluation obtained from the standard method and the
proposed one, in multispeaker and speaker independent
modes. The baseline system 1s represented by syst.
and syst.1 to syst4 are for HMM/GVQ/L=3 to
HMM/GVQ/L = 9 systems respectively. As depicted in
the Figure, in multispeaker mode the best result was given
by the proposed approach HMM/GVQ/L = 7 introducing
a reduction from 7.66 to 4.33% giving arate of 43.5 %.
In speaker independent mode, where testing sets were
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Fig. 3: Comparison performance WER 1 (%) for the Multa
Speaker (SM) and Speaker Independent (ST) modes

constructed from speakers not used in the training set,
agam the proposed approach brings the best
performance, the WER was 16.4% in the HMM/GVQ/L =9
system, rather than 19.88% given by the standard
approach, causing a reduction in WER of about 17.5%.

CONCLUSION

The work described m this study is related to a
specific task m speech recogmition, that i1s of isolated
Arabic digits (0-9) recognition. The use of HMMs for
acoustic modeling dominates the field of speech
recognition. Although HMMs will continue to play a role
i most speech recognition systems for a long tine to
come, many alternative ideas have been presented in
recent years to address some of the shortcomings of
HMMSs. Thus, we proposed in the study between hand a
new approach in dealing with vector quantization and
hidden Markov models for speech recognition. We have
demonstrated that our method could achieve a significant
reduction m word error rate, which 1s the ultmate goal
pursued in speech recogmition systems.
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