
Deep Reinforcement Learning Applied to Cart Pole Game

Abdallah Al-Zu’bi and Ahmad Al-Qerem
Computer Science PSUT, Amman, Jordan

Key words: Deepmind deep learning, reinforcement
learning, cart pole, Markov decision process, Bellman
equation

Corresponding Author:
Abdallah Al-Zu’bi
Computer Science PSUT, Amman, Jordan

Page No.: 137-142
Volume: 15, Issue 6, 2020
ISSN: 1816-9155
Agricultural Journal
Copy Right: Medwell Publications

Abstract: Building an agent to play games might be done
in several ways, like mini-max, Monte Carlo tree search,
deep learning or it could be a combination of two or three
technics or even more, like the popular chess computer
engine deep blue or alpha go. This document built an
agent that plays and balances cart pole game, the agent
used deep reinforcement learning-specifically Q-learning-
algorithm to build neural network that greedy to maximize
the reward function and balance the pole for the longest
period at the end we got an agent that outperform the
random and human agent.

INTRODUCTION 

In the era of Artificial intelligence and machine
learning, there are a lot of terminologies that flow to the
top, one of them is Deepmind or google deepmind, it is a
combination of deep neural network and reinforcement
learning[1] or you can consider it as reinforcement learning
with deep network that approximate the value function or
Q value function. We are going to discuss each part in
separate section.

Reinforcement learning is an AI algorithm that tries
to learn from the environment by taking sequence of
actions, then get rewards for these actions, after each
action the agent checks the new state of the environment,
it tries to maximize the reward function and builds a
policy to take the best sequence of actions to maximize
the cumulative rewards, the policy can be defined as the
mapping between environment state and actions, so given
an state to the agent, he can take an action if he has a
policy function[2].

Deep learning refers to neural network with some
complexity, usually the neural network has more than two
hidden layers, Q learning is an example of deep learning

and we are going to discuss it in separate section. The
results of creating deepmind agent that plays atari game
was surprising, a lot of agents surpasses profession human
players[3].

Deepmind has a lot of applications like self driving
cars, Robotics, healthcare[4], however, it could be
extended to any discipline where the agent can learn and
take experience from interacting with the environment to
build a strategies to take a good sequence of actions or
maybe the optimal sequence if you build the neural
network and that approximate the Q value function and
tune it well. 

AlphaGo is one of the most popular deepmind agent,
it is the first agent that can play and defeat champion’s Go
players, it has been announced as the best go player ever
in the history, after defeating the world champions Seoul
in 2016 four times before it got lost one time[5].

Our agent plays cartpole game and tries to keep it
balance as much as possible, the input of the game is
image of pixels, we used a game from GYM toolkit,
which is open source AI library, it is built for
reinforcement learning purpose as it simulates the game
environment so you can take an action and get reward or

137



Agric. J., 15 (6): 137-142, 2020

Agent

Environment

R

I

score for each action then get the new environment state
for each action using built in API. There are many games
you could test your reinforcement algorithm on them, so
it is very helpful specially for beginners and it is used to
compare between reinforcement learning algorithms that
built to resolve games[6].

REINFORCEMENT LEARNING

It is defined as the process of building agent that is
able to learn from interacting with the environment, takes
good or bad consecutive actions and keeps improve
himself, it is simulate how human being learns[1], let’s say
when you are trying learn driving car, here you are the
agent and the road, car, traffic lights. represent the
environment, the agent keeps take actions and if he drives
good he will get a positive reward and if not he will get a
punishment or negative reward until reaching the
destination, he does this many times to learn how to drive
well and follow the policies, the agent tries to maximize
the sum of rewards that could be getten each trial by
driving well and avoiding driving in a bad way and taking
the shortest path. So, the agent keeps taking actions, e.g.,
take the next right or left and this will change the
environment and taking reward or punishment for each
action. actually it is not bruteforce process as some people
think, as the agent after a while will learn to stop at the
red traffic light and pass the green one, limit his speed on
some roads, taking the shortest path, even if he doesn’t
explore all the environment and even if road speed limit
has been changed, so, defining the reward functions is one
of the most important point in the RI to build a genius
agent, some people defined it as an art, it is not necessary
to be a complex one but it should be a suitable for the
environment, e.g., Some Atari Games uses the score that
returns from the game, our agent for cart pole uses the
time steps, he can get a punos rewards for each time step
he keeps the pole balanced.

As you can see in Fig. 1, the agent keeps do actions
and the environment keeps updated, then update the agent
with new rewards and states, the agent use this new state
to take the next action, so, the agent tries to maximize its
rewards[8].

0 1 2 NReward R R R ,..., R    

In some situation like self -driving car, the agent will
keeps driving and may go in a cyclic tour as this will
increase its reward, so, we used to multiply the reward
value with discount factor (γ), so that, the partial you take
from the future reward will be less than you take from the
current reward in that way, we force the agent to reach the
goal state or finish the game faster to maximize its
rewards[8].

Fig. 1: Reinforcement learning paradigm

2
t 0 1 2 t 1i 0

G R R R ,..., t R



      

where, γ is hyper-parameter between 0 and 1, to force the
agent to finish the game earlier.  So, the expected reward
for the agent if he follows the policy π in the state s will
be defined in this equation and this value is called state
value function[2]:

t

k
k t 1 t0

V (s) E R |S s


  
     

Where:
Π = Policy
Eπ = Expected value when following the policy

The agent explores the environment and gets
experiences from it and tries to build its own policy which
is a matrix (plan) that maps state to an action. 

There is another term that should be defined which is
Q-value or quality value function, it is the reward that the
agent expects to have if he takes an action a in state s and
then following the policy, so it is defined the quality of
the given state a when you take an action a and this can be
defined in following math equations[8]:

t

k
k t 1 t tQ (s,a) E R |S s,A a        

We could rewrite it as[2]:

   
t *S'

Q (s,a) E r | s,a P s' | s,a V (s')    

So, the input of the Q function is a state an action and
policy while the output is the expected reward, the agent
will try to maximize this value, so he will chose the policy
that maximize this value[2].

*Q (s,a) max Q (s,a) 

So,  the  agent  will  find  the  optimal  policy  while
he  interacts  with  the  environment  and  getting  reward
and  punishment.  Keeps  going  between  exploration and

138



Agric. J., 15 (6): 137-142, 2020

exploitation until reaching a converged value for Q-value
function to build the policy, this could be done using
value iteration or policy iteration.

As you can see from the equations above they use
recursive so we need to approximate these values and this
is done using deep neural network.

DEEP LEARNING

It is a class of machine learning algorithm, in which
the model consists of neural networks that has more than
one hidden layer, emulating the human brains of thinking,
this network is trained using training dataset and then
used to predict and take a decision for any new entries, it
is used in many discipline like approximate the expected
agent’s reward function in our example, spam and Fraud
detection,  image  classification  and  in  many  others
fields[7, 8].

MARKOV DECISION PROCESS

MDP is the mathematical model that is used to
represent the sequence of decisions making process in any
environment[9], actually it is built during 1950s, it is a
generic model widely used in machine learning
specifically in reinforcement learning for representing a
model that has both parts of decisions making, stochastic
and computed decisions, this model tries to optimize and
build an agent that has a perfect reaction for the
environment states[2]. In this project, MDP is used to build
our agent that starts acting randomly then build its own
greedy policy or the plan to increase its reward from the
environment.

So, the mathematical model contains a set of
environment, set states S and for each state the agent have
to take an action a from actions set A and this will change
the cumulative reward value for the agent then as a
consequence of taking an action change the current state
s to the next state. so we are talking about trajectory of
states actions and reward[1, 2]:

0 0 1 1 1 2 t t t 1S ,A ,R ,S ,A ,R ,..., S ,A ,R 

BELLMAN EQUATION

It is a mathematical optimization techniques that
divides a dynamic optimality problem to subproblems as
it will be easier to resolve these subproblems and then
merge them together to resolve the main problem, it is
applied to many fields like engineer control theory,
economic, applied mathematic, machine learning and
algorithm optimization. it is named for Richard E.
Bellman who is applied mathematician, the Bellman
equation  is  the  spark  idea  for  the  dynamic
programming[2, 10], in our RI solution we used it to build
optimal policy or mapping function for the agent, Bellman

equation is build on ‘optimality principle’ which implies
that whatever the state or the actions has been taken the
remaining states should be taken optimally, so, it is
divided the problem to states then find the optimal reward
that could be getten, it is related to the definition of both
the Q-value function and value function as it divided the
dynamic problem recursively to sub tasks or to be
accurate the definition of Q-value function coming from
this Bellman Equation. So, the bellman equation for our
Q-value function in RI[4]:

 * *
a s'V (s) max R(s,a) P(s' | s,a) V (s')    

Where:
VΠ* = Value function 
s' = Next state
π* = Optimal policy 
γ = Discount factor
P(s'|s, a) = Probability to go to state s’ when you take

action a in s state
R(s, a) = Reward function of taking action a in state s

VALUE ITERATION

It is the process of exploring the expected reward
function R for each state s using bellman optimization
equation until finding a good policy (converge the value
function) to follow, it is start with empty value function
and then keeps evaluation this function and improves it
while exploring and taking experience from the
environment, here is the pseudo code to find the policy
using value iteration:

Initialize the value V to random values
Repeat

for all State s0S
for all action a0A
Qπt(s, a)= EΠ[r|s, a] + γ Gs' P(s'|s, a)×VΠ*(s')

V(s) = maxaQ(s, a) from the for loop
Until V(s) converge[8]

POLICY ITERATION

It is similar to Value Iteration while this iteration
works on the Q-value functions directly rather than the
value function as we only care about the policy, we
converge the Q-value directly, it needs less iteration to
converge but each iteration more complex than the one
used in value iteration. It is useful as sometimes the
convergence of the policy happens before the converages
of the value function itself. Here, is the pseudo code:

Initialize the policy Π* to random values
Repeat

*

*s'
V E [r | s, (a)] P(s' | s, (a)) V (s')  

 

     

     
'

* *
aV (s) argmax {E[R(s,a)] P(s' | s,a) V (s')}    

Until V(s) converge

139



Agric. J., 15 (6): 137-142, 2020

Q-LEARNING

It is a model free learning in which the agent doesn’t
know anything about the states, rewards, or the
environment. So, the agent will get its experiences from
interacting with the environment. It is used time
difference learning which is approximation for the policy,
so it keeps update the Q-value after each iteration using
this equation:

obsQ(s,a) (1 a)Q(s,a) Q (s,a)  

Where:

obs a 'Q (s,a) r(s,a) max (s',a ')  

So, after that deep network used to approximate this
Q value function to be used for the agent to take a good
actions[2]. Here, is the pseudo code for Q-learning
algorithm that we used in building our agent[2]:

Initialize Q(s, a) Randomly, D ={}
Repeat for all episode:

{   initialize S
    for each step in the current episode
     {

 r = generate Random(0,1)
 if(r>0)at = Random Action()
 else at = Q*(st, a, θ)
 execute at

store transition (st, at, rt, st + 1) in D
st + 1 = st

sample random minibatch of the transition 
set yj = rj = γmaxa' Q(st + 1, a'; θ)
or yj = rj forn terminal state
define loss as Lθj = (yj-Q(st, aj; θ))
perform adam gradient descent on Lθj

 }
 }
END
0:Exploration rate it should keep decreasing.
D:replay memory

As you can see the Q learning keeps updating the
weights after each iteration until it is coverage and the
neural network gives a good approximation for the Q
value function so that we can use as a policy. 

EXPLORATION VS EXPLOITATION

Exploration is the process discovering the
environment by the agent so it starts by taking somehow
random actions to build a knowledge and experience
about the environment that will help him to build the
policy, exploitation is the process of using this knowledge
to take a good actions, so, the agent should start with
hight exploration and keep building his knowledge then
he should balance between exploration and exploitation to
build a good policy, so that, we use monotonic decreasing
function to reduce exploration rate.

Fig. 2: Cart Pole

CART POLE AGENT

About the game: Before talking about our agent we are
going to talk about the game itself, how to play, its rules
like when you win, legal moves, etc.

As seen in Fig. 2, there is a cart and in the middle of
it there is a pole, the idea is to keep the pole vertically
balanced and avoid dropping it down. The player can
move the cart either to the right or left and he will loss
when θ>15 or θ#15 or the cart goes to the left or right
most of the screen, so you need to keep moving the cart
left and right in the middle of the screen and balance the
pole at the same time to win the game. 

Environment: We used python as programming
language, it is a rich, good tool for machine learning and
reinforcement learning. I used Jupyter notebook to write
the code and run it. 

We used keras library to train our agent and build the
neural network that will be used to approximate the policy
function. We used GYM library, it provides you with the
game itself and a lot of API that is built in specially for
Reinforcement learning purpose.

We have three layers network to approximate the
policy function. I used my machine to for learning and
testing the agent. 

So, the agent trained for 600 games and he keeps
improving his policy, as seen in Table 1 after each 50
games we saves the policy that was built by the agent to
compare between them and here are the results. 

Agent: Our agent use Q-learning algorithm to build its
policy, it uses three layers as neural network that used to
approximate its policy function, it starts with exploration
rate 95% and keep decays while building its policy (using 

140

 

l 

x 

M 

y 

mm 

θ

F 



Agric. J., 15 (6): 137-142, 2020

Table 1: Result of the training
After x trained games Mean of 100 test games SD of 100 test games No. of completed games Comment
0 8.36 0.728 0 Random Agent
50 8.45 0.739 0 Better but still likes random agent
100 35.05 13.067 0 It seems the agent starts learning jump from 8-35
150 54.12 14.700 0 It is doing better
200 24.11 3.720 0 Still explores 
250 152.62 7.560 0 Again it is doing better
300 234.57 15.500 0 As mean is 234 it is above the normal game

which is 200 
400 217.02 13.920 0 It seems the agent still explore
450 230.39 31.500 1 High standard deviation some games high

some games low (exploration vs exploitation)
and finish one game 

500 1246.71 772.000 5 Keeping the pole more than one time but high
SD (exploration)

600 3000 .00 0.000 100 It completes all the games

monotonic decreasing function) but the agent will keep
exploration even after building his network with rate
0.001, learning rate was set to 0.0001 and we use
Adaptive Moment Estimation (Adam) to optimize the
weight for the neural network after each step. 

The game will be ended if the agent fails to keep the
pole balanced or go out of the screen, left or right or if the
agent keeps the pole balanced for >200 time steps, we
have hacked the game and changed this, so, he can keep
playing util to 3000 timesteps, this is helpful for testing
phase as we need to check if our agent works well enough
and  compare  between  training  sets,  here  is  a  photo
from the game in the GYM library as it seems different
than Fig. 3 but they have the same idea, same rules and
same functionality. 

OUR OBSERVATION

Agent  training  live  time  is  briefly  described  in
Table 1, the random agent can’t keep the ball balances
even for 10 timesteps and even after 50 games almost the
agent has the same abilities but there is a good
improvement about 400% after it trained for 100 games
and keeps improvement after 150 but there is a decay
after 200 games, you can see after 500 games the agent
gets a good score about 1246 and finished some games,
after 600 it gets its optimal policy and success in all trails,
you  can  check the comments for each trails in the table
for more details and Fig. 4 that shows the enhancement
the agent got while training. 

Watching the agent while training is really
interesting,  started  randomly  and  fails  here  and  there
after that you feel like it really starts to understand the
environment and to learn from it. it starts keeping the pole
up but still he does a lot of mistakes and keeps balance
between exploring the environment and use what he was
learnt after 500 games he reaches a good policy he keeps
vibration but goes to the left or right most of the screen
and this makes him loose after 600 he understood how to
win, he should keep the pole balances in the middle of the 

Fig. 3: Cart Pole from GYM library

Fig. 4: Training set vs. performance

screen so as you can see there is a clear jump after 450
training games and after 600 games the agent surpasses
the human being. 

REFERENCES

01. Samson, L., 2016. Deep reinforcement learning
applied to the game bubble shooter. BA. Thesis,
University of Amsterdam, Amsterdam, Netherlands.

02. Sutton, R.S. and A.G. Barto, 1998. Reinforcement
Learning: An Introduction. 1st Edn., MIT Press,
Cambridge, MA.,.

03. Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra and M. Riedmiller, 2013.
Playing atari with deep reinforcement learning.
Comput. Sci., Vol. 2013.

04. ElMaraghy, H.A., 1987. Artificial intelligence and
robotic assembly. Eng. Comput., 2: 147-155.

141

3000 
 

2500 
 

2000 
 

1500 
 

1000 
 

500 
 

0 

A
ve

ra
ge

 s
co

re
 o

f 
10

0 
ga

m
es

 

0          1000          200         30

After x trainin

Cart pole tra

0        400         500  

ng games 

aining agents 

       600 



Agric. J., 15 (6): 137-142, 2020

05. Silver, D., A. Huang, C.J. Maddison, A. Guez and L.
Sifre et al., 2016. Mastering the game of go with
deep neural networks and tree search. Nat., 529:
484-489.

06. Saito, S., Y. Wenzhuo and R. Shanmugamani, 2018.
Python Reinforcement Learning Projects: Eight
Hands-on Projects Exploring Reinforcement
Learning Algorithms using Tensor Flow. Packt
Publishing Ltd, Birmingham, UK., ISBN:
9781788993227, Pages: 296.

07. LeCun, Y., Y. Bengio and G. Hinton, 2015. Deep
learning. Nature, 521: 436-444.

08. Goodfellow, I., Y. Bengio and A. Courville, 2016.
Deep Learning. MIT Press, Massachusetts, United
States, ISBN: 9780262337373, Pages: 800.

09. Bellman, R., 1957. A markovian decision process. J.
Math. Mech., 6: 679-684.

10. Bellman, R.E., 1957. Dynamic Programming, ser. in
Rand Corporation Research Study. Princeton
University Press, Princeton, New Jersey,.

142


