TY - JOUR T1 - Performance Analysis of Local Binary Patterns in Texture Classification AU - Sudha Sree, Ch. AU - Sekhara Rao, M.V.P. Chandra JO - International Journal of System Signal Control and Engineering Application VL - 12 IS - 4 SP - 74 EP - 84 PY - 2019 DA - 2001/08/19 SN - 1997-5422 DO - ijssceapp.2019.74.84 UR - https://makhillpublications.co/view-article.php?doi=ijssceapp.2019.74.84 KW - Local Binary Patten (LBP) KW -Local Ternary Pattern (LTP) KW -Completed Local Binary Pattern (CLBP) KW -Completed Local Binary Count (CLBC) KW -AdjacentEvaluation Completed Local Binary Pattern (AECLBP) KW -texture classification KW -rotation invariant AB - This study presents a detailed comparative study on various Local Binary Pattern (LBP) variant texture descriptors in texture classification. The work includes nine various texture descriptor methods namely LBPriu2, LBPri, LTP, VAR, LBP/VAR, CLBP, CLBC, AECLBP, AELTP. The performance of these methods is evaluated basing on three well-known benchmark texture databases OUTEX, CUReT, UIUC, using the nearestneighbourhood classifier. ER -