files/journal/2022-09-03_18-47-39-000000_423.png

Research Journal of Biological Sciences

ISSN: Online 1993-6087
ISSN: Print 1815-8846

Research Journal of Biological Sciences (RJBS)is to publish peer reviewed open access research articles, review articles, mini-review and scientific reports in the developing and broader field of environmental, biological and sciences.

References

  1. Bowong, S. and J.J. Tewa, 2009. Mathematical analysis of a tuberculosis model with differential infectivity. Commun. Nonlinear Sci. Numerical Simul., 14: 4010-4021.
  2. Nicholson, E.G., A.M. Geltemeyer and K.C. Smith, 2015. Practice guideline for treatment of latent tuberculosis infection in children. J. Pediatr. Health Care, 29: 302-307.
  3. Li, G. and Z. Jin, 2005. Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period. Chaos, Solitons Fractals, 25: 1177-1184.
  4. Colijn, C., T. Cohen and M. Murray, 2007. Mathematical Models of Tuberculosis: Accomplishments and Future Challenges. In: BIOMAT 2006, Mondaini, R.P. and R. Dilão (Eds.)., World Scientific, ISBN-17: 978-981-270-877-9, pp: 123-148.
  5. Kuwaiti, A.A., V. Raman, A.V. Subbarayalu, S. Prabaharan, R.M. Palanivel and G. Anumolu, 2018. Computing the infection period of HIV and TB patient through non-deterministic model. Int. J. Comput. Theor. Stat., 5: 15-18.
  6. Cadmus, S., S. Palmer, M. Okker, J. Dale and K. Gover et al., 2006. Molecular analysis of human and bovine tubercle bacilli from a local setting in Nigeria. J. Clin. Microbiol., 44: 29-34.
  7. Dooley, S.W., M.E. Villarino, M. Lawrence, L. Salinas and S. Amil, 1992. Nosocomial transmission of tuberculosis in a hospital unit for HIV-infected patients. JAMA, 267: 2632-2634.
  8. WHO., 2012. Global Tuberculosis Report. World Health Organization, https://apps.who.int/iris/bitstream/handle/10665/75938/9789241564502_eng.pdf?sequence=1.
  9. Gupta, R.D. and D. Kundu, 2007. Generalized exponential distribution: Existing results and some recent developments. J. Stat. Plann. Inference, 137: 3537-3547.
  10. Karlis, D., 2009. A note on the exponential poisson distribution: A nested EM algorithm. Comput. Stat. Data Anal., 53: 894-899.
  11. Kuş, C., 2007. A new lifetime distribution. Comput. Stat. Data Anal., 51: 4497-4509.
  12. Tilahun, G.T., M.T. Belachew and Z. Gebreselassie, 2020. Stochastic model of tuberculosis with vaccination of newborns. Adv. Differ. Equations, Vol. 2020. 10.1186/s13662-020-03122-w.
  13. Tchatchambe, N.B.J., N. Ibanda, G. Adheka, O. Onautshu, R. Swennen and D. Dhed’a, 2020. Production of banana bunchy top virus (BBTV)-free plantain plants by in vitro culture. Afr. J. Agric. Res., 15: 361-366.
  14. Abba, A. and S. Athithan, 2020. A stochastic approach of tuberculosis model with effects of case detection and treatment. Proceedings of International Conference on Applied Mathematics and Computational Sciences, October 17-19, 2019, AIJR Publisher, pp: 7-19.
  15. Mbokoma, M. and S.C.O. Noutchie, 2017. Mathematical analysis of a stochastic tuberculosis model. J. Anal. Appli., 15: 21-50.
  16. Kipruto, H., J. Mung’atu, K. Ogila, A. Adem and S. Mwalili, 2013. An application of deterministic and stochastic processes to model evolving epidemiology of tuberculosis in Kenya. Int. J. Sci. Res., 4: 1663-1671.